当前位置:云计算行业动态 → 正文

工业边缘计算有哪些应用场景?

责任编辑:cres |来源:企业网D1Net  2020-11-20 13:43:29 本文摘自:今日头条-富联芯物联网

边缘计算是一种分布式计算系统架构。在其中,计算资源和应用程序服务可以分布在从数据源到云的通信路径中。边缘可以满足计算需求,因此也孕育而生出工业边缘计算,而工业边缘计算在工业物联网的应用有哪些?
 
工业边缘计算在工业物联网中具有下列的应用场景。
 
1、工业边缘计算可以保护设备免遭温度过高破坏
 
名以“Dumb”的热电偶可以精确测量泵的温度。具有边缘计算功能的泵可以执行基本分析,以确认其是否超过定义的临界点,并在几毫秒内关闭泵。执行的过程没有延迟,无需网络连接就可执行此功能。联网虽不是必须的,但可适用于通知。温度信息的时间值会迅速衰减,这样的延迟可能会导致设备破坏。在这样的情况下,边缘处于设备级别,即使达到更高级别的系统连接到互联网或网络出现中断,也可以实现关键目标。
 
2、工业边缘计算可以监测工厂或生产线的性能
 
设备和生产线的性能一般由性能指标显示,如总体设备效率(OEE)。可以在本地网关(网关)上的工厂中每个传感器的多个数据点上执行近实时分析,然后可以向操作系统或人员提供OEE趋势和警告。在这样的情况下,基本功能须要从多个设备获取信息以执行简洁明了分析。等待云决策的响应将使信息的时间价值更高。如果有延迟,将造成严重损失。这些业务问题意味着边缘计算适合在工厂领域。
 
3、工业边缘计算可以每两天优化一次本地或工厂供应链
 
要优化本地设施,工厂或油田的供应链工作流程,须要获取多个数据源,并在很短的时间内应用优化的算法和分析,以使像供应链管理(SCM)或企业资源计划(ERP)之类的商业系统得以应用。基本功能须要在几个小时内进行本地或工厂级的联网和决策。工厂外围以外的其他信息可能有价值,但是对于有效的优化不是硬性规定的。在这样的情况下,边缘计算将设置在工厂,现场或本地设施的外围。
 
4、工业边缘计算可以预测设备故障并主动报告时间表
 
机器学习模型可预测电动潜水泵(ElectricSubmersiblePump)的故障,然后从多个海上平台获取数据。分析模型非常复杂,要用大量数据来训练和重新训练模型,以及定期输入数据(Feed)来确认潜水电泵运行的每个单元的剩余使用寿命。另外,有必要定期分析每个潜水泵的数据,但是信息的衰减比其他情况要慢得多,且可以每天或每周做出决定。计算一般在企业级公共云或私有云中执行,然后位于边缘连续体的顶部。
 
总而言之,工业边缘计算可以降低网络延迟,然后无需通过网络将数据传输到数据中心或云进行处理。对于时间要求相对较高的工业而言,这尤其重要,因为工业行业要实时数据搜集和对自动化生产线的即时反馈处理。

关键字:边缘计算

本文摘自:今日头条-富联芯物联网

工业边缘计算有哪些应用场景? 扫一扫
分享本文到朋友圈

关于我们联系我们版权声明友情链接广告服务会员服务投稿中心招贤纳士

企业网版权所有©2010-2020 京ICP备09108050号-6

^