当前位置:数据网络行业动态 → 正文

贝尔实验室打破长距离传输容量极限

责任编辑:杨传波 |来源:企业网D1Net  2013-08-21 11:57:41 本文摘自:C114

随着高速传输技术在现网中的应用,长距离传输技术的发展也备受关注,尤其是目前100G技术的商用后,400G、1T的传输速率已经被提上议程,基于现有的技术发展路线,长途传输容量的极限也遭受挑战,要确保长距离传输的光信号强度,同时扩展传输容量已经成为长距离光通信领域的重要课题。

贝尔实验室目前已经开发出了能够打破这一局限的突破性技术,通过“相位共轭光”,大幅降低因光纤中非线性光学效应而导致的信号劣化。据了解,贝尔实验室将这项技术用于复用传输8个不同波长光信号的长距离光通信系统后确认,一根1.28万公里长的光纤具备406.6Gbit/秒的传输容量。而这一数字与目前实用的最新传输容量相同,值得一提的是,相比之下,采用新技术后光信号质量更高,或只需更小的光信号强度。

技术瓶颈

从现有长途传输技术的发展来看,长途传输技术的传输容量及信号强度的提升都已经接近极限,尤其是从现网100G技术的应用来看,运营商已经面临如何减少非线性效应的问题,包括采用低损耗、超低损耗光纤以减少传输损耗,随着更高速传输技术的进一步应用,传输容量的极限将成为技术实现层面的主要瓶颈。

据了解,长距离光通信通过波分复用(WDM)技术让波长各不相同的几十条光线穿过一根光纤,因此光纤可能会因其热量而熔化。与此同时,目前可穿过单根光纤的光输出功率在1.2~1.4W左右,即使没有非线性光学效应,100Tbit/s的传输容量也是一个极限。目前最新的海底电缆传输容量为3.5Tbit/s,这一容量已基本成为传统长途传输技术的容量极限,现在越来越多的技术专家关注于如何从基础层面来打破这极限。

相位共轭光

相位共轭光是指从光源处发射出的光线经相位共轭反射镜后按照原路径反射回光源处的光。相位共轭光的振幅和频率与原光线相同,仅光线的传播方向相反。与传统的反射光相比,相位共轭光不仅消除了信号失真,同时波长分散、相位噪声等都会因此而消失。传统的光纤传输中,光信号通过一系列的全反射进行光传输,在传输过程中的光信号衰减、非线性效应等问题都存在,而通过相位共轭光的传输,则可以有效消除一系列的非线性效应。

据了解,相位共轭光的技术研究已经持续较长时间,同时在光通信领域已有研究,然而由于传输过程中需要特殊的中继器,因而实用化较低。

贝尔实验室所提出的这一创新技术也是采用了相位共轭光,从而实现了现有光纤也可也可降低因非线性光学效应而导致的信号失真。

此次贝尔实验室提出的通信系统则无需中继器。该系统在传输光信号时,可以同时传输普通的光信号A及其相位共轭光的光信号A+。虽然任何一个光信号都会在传输路径上出现劣化,但A+所承受的信号失真的主要成分,其编码与A信号失真的主要成分相反。也就是说,A与A+合成后,信号失真的大部分会相互抵消。

关键字:

本文摘自:C114

x 贝尔实验室打破长距离传输容量极限 扫一扫
分享本文到朋友圈
当前位置:数据网络行业动态 → 正文

贝尔实验室打破长距离传输容量极限

责任编辑:杨传波 |来源:企业网D1Net  2013-08-21 11:57:41 本文摘自:C114

随着高速传输技术在现网中的应用,长距离传输技术的发展也备受关注,尤其是目前100G技术的商用后,400G、1T的传输速率已经被提上议程,基于现有的技术发展路线,长途传输容量的极限也遭受挑战,要确保长距离传输的光信号强度,同时扩展传输容量已经成为长距离光通信领域的重要课题。

贝尔实验室目前已经开发出了能够打破这一局限的突破性技术,通过“相位共轭光”,大幅降低因光纤中非线性光学效应而导致的信号劣化。据了解,贝尔实验室将这项技术用于复用传输8个不同波长光信号的长距离光通信系统后确认,一根1.28万公里长的光纤具备406.6Gbit/秒的传输容量。而这一数字与目前实用的最新传输容量相同,值得一提的是,相比之下,采用新技术后光信号质量更高,或只需更小的光信号强度。

技术瓶颈

从现有长途传输技术的发展来看,长途传输技术的传输容量及信号强度的提升都已经接近极限,尤其是从现网100G技术的应用来看,运营商已经面临如何减少非线性效应的问题,包括采用低损耗、超低损耗光纤以减少传输损耗,随着更高速传输技术的进一步应用,传输容量的极限将成为技术实现层面的主要瓶颈。

据了解,长距离光通信通过波分复用(WDM)技术让波长各不相同的几十条光线穿过一根光纤,因此光纤可能会因其热量而熔化。与此同时,目前可穿过单根光纤的光输出功率在1.2~1.4W左右,即使没有非线性光学效应,100Tbit/s的传输容量也是一个极限。目前最新的海底电缆传输容量为3.5Tbit/s,这一容量已基本成为传统长途传输技术的容量极限,现在越来越多的技术专家关注于如何从基础层面来打破这极限。

相位共轭光

相位共轭光是指从光源处发射出的光线经相位共轭反射镜后按照原路径反射回光源处的光。相位共轭光的振幅和频率与原光线相同,仅光线的传播方向相反。与传统的反射光相比,相位共轭光不仅消除了信号失真,同时波长分散、相位噪声等都会因此而消失。传统的光纤传输中,光信号通过一系列的全反射进行光传输,在传输过程中的光信号衰减、非线性效应等问题都存在,而通过相位共轭光的传输,则可以有效消除一系列的非线性效应。

据了解,相位共轭光的技术研究已经持续较长时间,同时在光通信领域已有研究,然而由于传输过程中需要特殊的中继器,因而实用化较低。

贝尔实验室所提出的这一创新技术也是采用了相位共轭光,从而实现了现有光纤也可也可降低因非线性光学效应而导致的信号失真。

此次贝尔实验室提出的通信系统则无需中继器。该系统在传输光信号时,可以同时传输普通的光信号A及其相位共轭光的光信号A+。虽然任何一个光信号都会在传输路径上出现劣化,但A+所承受的信号失真的主要成分,其编码与A信号失真的主要成分相反。也就是说,A与A+合成后,信号失真的大部分会相互抵消。

关键字:

本文摘自:C114

电子周刊
回到顶部

关于我们联系我们版权声明隐私条款广告服务友情链接投稿中心招贤纳士

企业网版权所有 ©2010-2024 京ICP备09108050号-6 京公网安备 11010502049343号

^