当前位置:电源技术专区 → 正文

基于双变换不间断电源的全桥IGBT讲解

责任编辑:editor005 |来源:企业网D1Net  2014-11-21 17:05:54 本文摘自:中国电力电子产业网

科技的飞速发展为人们的生活带来了便利,各种各样的电源开始充斥着人们的生活。其中不间断电源被大量使用在信息和数据保护设备上,不间断电源的发展很大程度上是依赖于IGBT、Power MOSFET等电力电子器件的。UPS拥有较多的电路拓扑结构,在这些电路当中,带输出变压器的双变换电路结构的应用是最为广泛的。从被研发至今,这种电路结构几乎没有经过多少改造,而是仅仅在控制电路和用户界面做了改进。这就从侧面说明了这种电路结构的经典性。

但即便是经典,也在近几年的科技冲击下逐渐显示出劣势,相较于大热的高频链双变换UPS,传统的双变换电路结构的缺点已经逐渐暴露出来,但是依赖其成熟的技术,几乎工业化的标准模块式结构和很高的可靠性,使它在市场拥有的份额并没有减小,而且产量越来越大,迫使各大UPS厂商寻找新的技术,以提高效率,降低成本。尤其效率的提高,能有效地减小散热器尺寸,减少后备电池容量,减小充电器功率,明显减小整机体积重量。如果10KVA UPS的8小时机型,提高2%的整机效率,可以减少使用相当12V 6.5AH电池20多节。

典型的双变换UPS

1-1

  图1,带输出变压器的双变换UPS

如图1所示,是一个典型的双变换UPS,输入交流电经过由D1~D4构成的全桥整流电路,整流得到220V~330V的直流母线电压,电池电压范围为160V~220V,通过隔离二极管D5送给直流母线,供逆变器,所以逆变器的输入电压范围为160~330V。为了输出220V的稳定交流电压,必然需要升压隔离式逆变变压器T1并采用SPWM调制技术。

由于使用IGBT,逆变器一定会采用SPWM技术,且尽量提高调制频率来减小输出谐波分量,但是由于考虑IGBT的开关损耗,合理的调制频率在8~10kH*********。如果直接采用全桥式单极性调制方式,逆变变压器有8~10kH*********的谐波分量,会有明显的可闻运行噪声,如果进一步提高调制频率到20kH*********可消除可闻运行噪声,在目前技术条件下,无论选用何种芯片技术的IGBT,都会明显增加开关损耗,整机效率降低,这是不可取的。

现有的倍频式PWM调制技术就能很好的解决这一问题,只要采用两个反向的三角波,分别调制Q1和Q4,Q2和Q3,就能使输出的调制频率翻倍。这样一来就能保证IGBT 工作在最理想的状态,同时满足整机设计要求。

实例讲解

2-1

  图2

为了简化讨论,这里讨论一个半桥臂的工作情况,参考图1。我们分析当逆变器Q1关闭时的电压电流波形,见图2。由于负载电感的电流不能突变,继续流过Q2,下部IGBT的中续流二极管。其电流变化速率di/dt在寄生电感上会产生一个压降ΔV=-Lσ×di/dt,它叠加在直流母线上,可以看作在关断Q1的电压尖峰,这个尖峰电压会损坏Q1。

在常见的采用半桥IGBT模块并用并行直流母线连接的UPS设计,为了保护IGBT,使其工作在安全工作区RBSOA内,一般需要采用复杂的吸峰电路。成本高,且要消耗不少能量,有一典型的用于10kVA UPS逆变回路吸峰电路,需要80×80风扇冷却,这是UPS逆变电路亟待改进的地方。

产生ΔV原因可以从下式可以看出:ΔV=-Lσ×di/dt,其与IGBT电流下降速率和回路的电感成正比。要减小尖峰电压,可以减小电流下降速率,就是通常说的关断比较软,但是会增加损耗;另一方法是减小电感,这个电感就是寄生电感。

从原理上说寄生电感与回路包围的面积有关,在设计中,应该选用适当的低电感器件,而且器件布局尽量紧凑。那么如何在UPS设计中减小寄生电感,废除耗能的吸峰电路,降低成本,这是UPS设计者关心的问题。

目前UPS逆变器的功率管采用的是IGBT半桥功率模块,如EUPEC的BSM200GB60DLC。这些IGBT都采用了双极型三极管模块的封装。其体积大,成本高,自身的寄生电感也大。

在IGBT发明时,在第一代IGBT开关速度不太快的前提下,厂商采用双极型三极管模块的封装国际工业标准,可以使得用户在不改变整机结构的情况下,方便取代双极型三极管模块,其不失为一个很好的选择。

结果是UPS厂商的逆变功率模块也始终按双极型三极管的半桥模块设计,这样一来引进比模块本身更大的寄生电感。寄生电感会在IGBT关断的过程中形成很大的尖峰电压。尤其当今IGBT的开关速度已很高了。

那么如何来减小寄生电感是一个IGBT应用关键技术,最有效的方法是把并行母线改为叠层母线,减小回路包围的面积。对于并行母线,其母线宽度与母线距离之比a/b>1,其寄生电感Lσ>300nH,而叠层母线很容易做到a/b<0.01,这样寄生电感Lσ仅为20~30nH,考虑其它因素,寄生电感Lσ实际可以控制在100nH以下。

封装的改进

为了使这一技术实用化,EUPEC公司在1994年制定了一种IGBT国际工业标准化的封装,即Econo,它是第一个IGBT的封装。Econo有两种封装尺寸,即Econo2和Econo3,见(图3)。现有的主要产品是用于逆变器三相全桥模块。最近EUPEC推出单相全桥模块 Econo FourPACK ,其600V系列是专为UPS设计的,包括以下几种常用型号,见表1:

3-1

  表1

Econo FourPACK系列模块由四个IGBT和四个反向续流二极管构成,它还包括温度检测 NTC,可用于超载、过温保护等。对称的芯片分布,合理的管脚设计使得模块内部和功率组件设计寄生电感最小;引出脚按能量流向分布,母线设计,控制线设计更容易。所有引出脚采用可焊接针,这样便于设计双面覆铜板叠层直流母线,它有很小的寄生电感,如果与EconoBRIDGE 整流模块一起构成系统设计更方便,更能体现优良的性能。

结论

本篇文章主要对双变换UPS不间断电源的全桥IGBT进行了全方位的介绍,这种设计能够在非常多的设计前提下对UPS不间断电源进行性能的整体提高,从而起到明显降低成本的作用。希望大家在阅读过本篇文章之后,能对这种全桥IGBT有进一步的认识和理解。

关键字:双变换IGBT模块

本文摘自:中国电力电子产业网

x 基于双变换不间断电源的全桥IGBT讲解 扫一扫
分享本文到朋友圈
当前位置:电源技术专区 → 正文

基于双变换不间断电源的全桥IGBT讲解

责任编辑:editor005 |来源:企业网D1Net  2014-11-21 17:05:54 本文摘自:中国电力电子产业网

科技的飞速发展为人们的生活带来了便利,各种各样的电源开始充斥着人们的生活。其中不间断电源被大量使用在信息和数据保护设备上,不间断电源的发展很大程度上是依赖于IGBT、Power MOSFET等电力电子器件的。UPS拥有较多的电路拓扑结构,在这些电路当中,带输出变压器的双变换电路结构的应用是最为广泛的。从被研发至今,这种电路结构几乎没有经过多少改造,而是仅仅在控制电路和用户界面做了改进。这就从侧面说明了这种电路结构的经典性。

但即便是经典,也在近几年的科技冲击下逐渐显示出劣势,相较于大热的高频链双变换UPS,传统的双变换电路结构的缺点已经逐渐暴露出来,但是依赖其成熟的技术,几乎工业化的标准模块式结构和很高的可靠性,使它在市场拥有的份额并没有减小,而且产量越来越大,迫使各大UPS厂商寻找新的技术,以提高效率,降低成本。尤其效率的提高,能有效地减小散热器尺寸,减少后备电池容量,减小充电器功率,明显减小整机体积重量。如果10KVA UPS的8小时机型,提高2%的整机效率,可以减少使用相当12V 6.5AH电池20多节。

典型的双变换UPS

1-1

  图1,带输出变压器的双变换UPS

如图1所示,是一个典型的双变换UPS,输入交流电经过由D1~D4构成的全桥整流电路,整流得到220V~330V的直流母线电压,电池电压范围为160V~220V,通过隔离二极管D5送给直流母线,供逆变器,所以逆变器的输入电压范围为160~330V。为了输出220V的稳定交流电压,必然需要升压隔离式逆变变压器T1并采用SPWM调制技术。

由于使用IGBT,逆变器一定会采用SPWM技术,且尽量提高调制频率来减小输出谐波分量,但是由于考虑IGBT的开关损耗,合理的调制频率在8~10kH*********。如果直接采用全桥式单极性调制方式,逆变变压器有8~10kH*********的谐波分量,会有明显的可闻运行噪声,如果进一步提高调制频率到20kH*********可消除可闻运行噪声,在目前技术条件下,无论选用何种芯片技术的IGBT,都会明显增加开关损耗,整机效率降低,这是不可取的。

现有的倍频式PWM调制技术就能很好的解决这一问题,只要采用两个反向的三角波,分别调制Q1和Q4,Q2和Q3,就能使输出的调制频率翻倍。这样一来就能保证IGBT 工作在最理想的状态,同时满足整机设计要求。

实例讲解

2-1

  图2

为了简化讨论,这里讨论一个半桥臂的工作情况,参考图1。我们分析当逆变器Q1关闭时的电压电流波形,见图2。由于负载电感的电流不能突变,继续流过Q2,下部IGBT的中续流二极管。其电流变化速率di/dt在寄生电感上会产生一个压降ΔV=-Lσ×di/dt,它叠加在直流母线上,可以看作在关断Q1的电压尖峰,这个尖峰电压会损坏Q1。

在常见的采用半桥IGBT模块并用并行直流母线连接的UPS设计,为了保护IGBT,使其工作在安全工作区RBSOA内,一般需要采用复杂的吸峰电路。成本高,且要消耗不少能量,有一典型的用于10kVA UPS逆变回路吸峰电路,需要80×80风扇冷却,这是UPS逆变电路亟待改进的地方。

产生ΔV原因可以从下式可以看出:ΔV=-Lσ×di/dt,其与IGBT电流下降速率和回路的电感成正比。要减小尖峰电压,可以减小电流下降速率,就是通常说的关断比较软,但是会增加损耗;另一方法是减小电感,这个电感就是寄生电感。

从原理上说寄生电感与回路包围的面积有关,在设计中,应该选用适当的低电感器件,而且器件布局尽量紧凑。那么如何在UPS设计中减小寄生电感,废除耗能的吸峰电路,降低成本,这是UPS设计者关心的问题。

目前UPS逆变器的功率管采用的是IGBT半桥功率模块,如EUPEC的BSM200GB60DLC。这些IGBT都采用了双极型三极管模块的封装。其体积大,成本高,自身的寄生电感也大。

在IGBT发明时,在第一代IGBT开关速度不太快的前提下,厂商采用双极型三极管模块的封装国际工业标准,可以使得用户在不改变整机结构的情况下,方便取代双极型三极管模块,其不失为一个很好的选择。

结果是UPS厂商的逆变功率模块也始终按双极型三极管的半桥模块设计,这样一来引进比模块本身更大的寄生电感。寄生电感会在IGBT关断的过程中形成很大的尖峰电压。尤其当今IGBT的开关速度已很高了。

那么如何来减小寄生电感是一个IGBT应用关键技术,最有效的方法是把并行母线改为叠层母线,减小回路包围的面积。对于并行母线,其母线宽度与母线距离之比a/b>1,其寄生电感Lσ>300nH,而叠层母线很容易做到a/b<0.01,这样寄生电感Lσ仅为20~30nH,考虑其它因素,寄生电感Lσ实际可以控制在100nH以下。

封装的改进

为了使这一技术实用化,EUPEC公司在1994年制定了一种IGBT国际工业标准化的封装,即Econo,它是第一个IGBT的封装。Econo有两种封装尺寸,即Econo2和Econo3,见(图3)。现有的主要产品是用于逆变器三相全桥模块。最近EUPEC推出单相全桥模块 Econo FourPACK ,其600V系列是专为UPS设计的,包括以下几种常用型号,见表1:

3-1

  表1

Econo FourPACK系列模块由四个IGBT和四个反向续流二极管构成,它还包括温度检测 NTC,可用于超载、过温保护等。对称的芯片分布,合理的管脚设计使得模块内部和功率组件设计寄生电感最小;引出脚按能量流向分布,母线设计,控制线设计更容易。所有引出脚采用可焊接针,这样便于设计双面覆铜板叠层直流母线,它有很小的寄生电感,如果与EconoBRIDGE 整流模块一起构成系统设计更方便,更能体现优良的性能。

结论

本篇文章主要对双变换UPS不间断电源的全桥IGBT进行了全方位的介绍,这种设计能够在非常多的设计前提下对UPS不间断电源进行性能的整体提高,从而起到明显降低成本的作用。希望大家在阅读过本篇文章之后,能对这种全桥IGBT有进一步的认识和理解。

关键字:双变换IGBT模块

本文摘自:中国电力电子产业网

电子周刊
回到顶部

关于我们联系我们版权声明隐私条款广告服务友情链接投稿中心招贤纳士

企业网版权所有 ©2010-2024 京ICP备09108050号-6 京公网安备 11010502049343号

^