大数据榔头:并非所有钉子都需要敲打

责任编辑:editor008

2014-09-11 09:31:32

摘自:36大数据

在大数据时代下,随着大数据技术的深入应用,经过反复实践证明,充分发挥规模化优势能够切实提升分析机制所带来的实践价值。不过如果把大数据看作一柄榔头,可并不是所有问题都属于等待敲下的钉子。

在大数据时代下,随着大数据技术的深入应用,经过反复实践证明,充分发挥规模化优势能够切实提升分析机制所带来的实践价值。不过如果把大数据看作一柄榔头,可并不是所有问题都属于等待敲下的钉子。

很多人都误以为在大数据解决方案中,处理对象的规模总是越大越好。事实上,人们往往会从不同的立场出发,对“越大越好”这一命题给出自己的答案,而我汇总出了几下几种典型情况:

深信不疑: 这是一种根深蒂固的观念,有些人认为无论实际情况如何,更庞大的规模、更迅捷的速度以及/或者更多样的数据类型总是能够带来更具实践价值的分析结论,而这也正是他们眼中大数据分析的核心价值所在。如果在实际操作中找到理想的结论,那么根据他们的思维方式,这仅仅是由于具体处理者不够努力、不够聪明或者没有使用正确的工具及方法。

盲目迷信: 这种观点认为,大数据的绝对规模本身就是其价值的切实体现,而这与我们是否能够从中获取到实际结论并无关系。根据这种思维方式,如果我们以大数据所支持的特定企业应用程序为出发点对大数据功能进行评估,那么完全不需要像当下分析领域这样迫切需要数据科学家的帮助、而能够任意将数据保存在数据湖当中以支持未来的探索活动。

视为负担: 这种观点认为,数据的庞大规模并不是带来正面或者负面结果的必要条件。不过有一项事实明确而不容否认,即现有数据库在存储与处理能力方面的匮乏根本无力负担大数据的高强度负载,因此需要新的平台加以支撑(例如Hadoop)。如果我们不能将发展脚步与数据的迅猛增长保持一致,那么这种观点认为企业的当务之急是将核心业务转移到新型数据库当中。

绝佳机遇: 就我个人而言,这才是看待大数据的正确方式。其核心实质在于随着数据规模的不断扩大、数据流速度的不断提升以及数据来源与格式的持续增长,我们需要以更加快捷而有效的方式所数据中提取出前所未有的分析结论。这种观点不会迷信或者过度依赖大数据,因为我们承认某些结论完全可以通过小规模数据分析方式得出。同时,这种观点也不会将数据规模视为一种负担,而单纯只是需要通过新型数据库平台、工具以及实践方案解决的另一项技术挑战。

D1Net评论:

随着大数据的深入应用,很多人都深信大数据可以解决一切问题,更有一些人认为,大数据解决的问题越大越好,其实,这种观点的非常不正确的,大数据这把榔头,并不是所有钉子都需要敲打,认清大数据的本质,从实际出发,才能将大数据价值发挥到实处。

链接已复制,快去分享吧

企业网版权所有©2010-2025 京ICP备09108050号-6京公网安备 11010502049343号