当前位置:人工智能行业动态 → 正文

解读机器学习翻译的局限性

责任编辑:cres 作者:Ryan Kh |来源:企业网D1Net  2019-11-06 11:19:55 原创文章 企业网D1Net

机器学习翻译对于人们的交流非常有益,但是它们也有其局限性。
 
机器学习为企业提供了翻译文档的新机会,他们可以使用机器学习来翻译营销材料和其他文献。但是,这些人工智能解决方案可能并不总是最好的选择。
 
神经机器学习的简要概述
 
Towards Data Science对于机器学习翻译这一发展进行了探讨,并提出了神经机器翻译这一术语。
 
人们生活在一个多元文化的世界中,但是通常不会说不同国家或民族的语言。这意味着需要比以往更多地依赖翻译人员和翻译软件。机器学习对语言之间的翻译非常有帮助。但这是一个最好的选择吗?
 
是否发现难以确定用于基础项目的最佳翻译方法?本文探讨了在各种情况下使用的更自然的解释策略。
 
机器学习真的可以在语言之间进行翻译吗?
 
人们生活在沟通交流至关重要的世界中,信息的发展比以往任何时候都快。这激发了每个人说多种语言的愿望,但只有少数一些人能够流利地说多种语言。
 
然而很少有人会说十种以上的语言。为此,企业如果开展国际业务,熟悉市场所在地的语言和文化。这只能通过翻译来实现。那么在这样的环境中使用的最佳翻译策略是什么?
 
如今,还有什么能够阻碍企业在海外市场的扩展?确定最佳翻译方法以适应其预期目的比人们想象得要容易。很多人可能认为机器学习比人类更擅长翻译,但这并不是事实。以下是人们应该了解的有关技术和人工翻译的知识。
 
技术翻译不会根据要求的场景解释信息
 
尽管机器翻译的创新是语言翻译领域的一个重大发展,但不幸的是,机器在解释创意内容时效率低得多。使用机器翻译时,向当地人传递正确的消息可能非常困难。机器翻译软件很难准确解释成语、意像和讽刺意味的内容。软件翻译的内容可能会很尴尬,这意味着完全不同的事情,可能会给企业开展业务带来负面印象,有时这会让对方当成一个笑话。
 
基于软件的翻译最适合与文档、编辑和任何其他形式的面向信息的内容一起使用。当解释内容翔实时,采用软件进行翻译是一种快速便捷的策略。因此,企业在与翻译公司达成协议之前,需要花费时间并分析将要解释的内容。弄清楚文本内容是面向信息的还是具有创造力的内容,然后决定是否使用人工翻译还是机器翻译。
 
机器翻译取决于人类的感觉
 
人工翻译更为直截了当,并考虑了原始文本的不同方面内容,例如文化、宗教和当地背景。对于机器翻译来说,情况并非如此。此外,人类的感觉是必不可少的,因为翻译人员可以分析文本,识别受众,并根据场景提供适当的翻译。
 
在分析人工翻译和机器翻译使用较少单词的准确性时,两者的准确性大致相同。然而,当机器翻译大量的文本时,其准确性将大打折扣。因此,在选择在线翻译服务之前,企业应该花费时间确定要提供的内容,并对采用哪种方法合适做出正确的决定。
 
尽管软件翻译似乎是最快的解释工具,但为了使信息准确传达给受众并更快地被采用,仍需要后期编辑。在将内容进行翻译之后进行编辑,这需要恰当的定位来理解信息的意图、目标受众和预期的解释结果。
 
与机器翻译不同,人类翻译对现代文化和语言有一些微妙的感觉。因此,他们可以通过自己的理解,并运用其翻译能力来了解原文的内容,确定其目标,并将其翻译给不同背景的人员。
 
机器翻译提供有限语言服务
 
机器被编程为可以翻译特定语言。因此,大多数软件翻译只能满足广泛使用的语言。这些语言包括:
 
•英语;
 
•西班牙语;
 
•中文;
 
•法语。
 
以上是最常见的语言,它们在众多翻译软件应用程序中都具有很重要的作用。机器很容易将这些语言翻译成文本。但是,当涉及到其他非程序化的通用语言时,将会出现显著的问题。
 
而且,具有类似语法的单词很容易由机器翻译。例如,与翻译土耳其语相比,机器将英语翻译为德语或从德语翻译为英语更为自然,之所以如此,是因为土耳其语的单词似乎更短。但是涉及所需场景时,翻译后的单词会更为复杂。值得注意的是,具有粘合性单词的文本较短,但是当翻译形成复杂的单词时,可能会使机器难以翻译。机器最终可能会得到不同的翻译结果,其含义可能会与原先的解释相去甚远,从而失去其相关性。
 
此外,在机器翻译不太广泛使用的语言时,相关性较弱。想象一下,企业采用了未经过编程以翻译目标语言的机器翻译服务,其项目可能受到影响,因为将无法达到创建项目的主要目的。
 
需要实现全球化吗?适当实施机器翻译或人工翻译
 
有了这些关于人类翻译和技术翻译的信息,选择适合企业场景的方法应该不再是一个问题。企业需要花费时间确定受众,预期目的,消息本身,然后再进行决定。
 
为基础场景选择最合适的翻译方法,可以使企业的项目在本地环境中享有更高的声誉。因此不要害怕走向世界。企业需要选择适当的翻译方法,以提高项目在国外环境中的适应性。
 
版权声明:本文为企业网D1Net编译,转载需注明出处为:企业网D1Net,如果不注明出处,企业网D1Net将保留追究其法律责任的权利。

关键字:人工智能 机器学习

原创文章 企业网D1Net

解读机器学习翻译的局限性 扫一扫
分享本文到朋友圈

关于我们联系我们版权声明友情链接广告服务会员服务投稿中心招贤纳士

企业网版权所有©2010-2019 京ICP备09108050号-6

^